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ABSTRACT

Background: Tuberculous meningitis (TBM) is the most severe form of tuberculosis, but 
differentiating between the diagnosis of TBM and viral meningitis (VM) is difficult. Thus, we 
have developed machine-learning modules for differentiating TBM from VM.
Material and Methods: For the training data, confirmed or probable TBM and confirmed VM 
cases were retrospectively collected from five teaching hospitals in Korea between January 
2000 - July 2018. Various machine-learning algorithms were used for training. The machine-
learning algorithms were tested by the leave-one-out cross-validation. Four residents and two 
infectious disease specialists were tested using the summarized medical information.
Results: The training study comprised data from 60 patients with confirmed or probable 
TBM and 143 patients with confirmed VM. Older age, longer symptom duration before the 
visit, lower serum sodium, lower cerebrospinal fluid (CSF) glucose, higher CSF protein, and 
CSF adenosine deaminase were found in the TBM patients. Among the various machine-
learning algorithms, the area under the curve (AUC) of the receiver operating characteristics 
of artificial neural network (ANN) with ImperativeImputer for matrix completion (0.85; 95% 
confidence interval 0.79 - 0.89) was found to be the highest. The AUC of the ANN model 
was statistically higher than those of all the residents (range 0.67 - 0.72, P <0.001) and an 
infectious disease specialist (AUC 0.76; P = 0.03).
Conclusion: The machine-learning techniques may play a role in differentiating between 
TBM and VM. Specifically, the ANN model seems to have better diagnostic performance than 
the non-expert clinician.
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INTRODUCTION

Tuberculous meningitis (TBM) is the most severe form of tuberculosis and causes 
inflammation of the meninges. TBM accounts for approximately 1% of all cases of TB and 5% 
of all extrapulmonary disease in immunocompetent individuals [1]. More than 100,000 new 
TBM cases are estimated to occur globally yearly [1]. Patients with TBM initially complain of 
an insidious onset of malaise, lassitude, headache, and low-grade fever. Nausea, vomiting, 
and confused mental state occur as the disease progresses, thereby leading to coma, seizures, 
and neurological damage. Despite the advancements in medicine, the case-fatality ratio is 
high and early diagnosis and anti-tuberculous therapy are critical for patients with TBM [2].

However, the diagnosis of TBM is markedly challenging. In the early phase, it may be 
difficult to differentiate between TBM and viral meningitis (VM) because of similar clinical 
manifestations. Additionally, the diagnostic tools for TBM and VM show low sensitivity. The 
isolation of acid-fast bacilli in the cerebrospinal fluid (CSF) as a rapid and specific method 
for diagnosing TBM has poor sensitivity, reported as low as 30% [3]. The CSF mycobacterial 
culture that is regarded as a definitive diagnostic tool for TBM also has low sensitivity and 
requires incubation of up to two months. Nucleic acid amplification tests (NAATs) and Xpert 
MTB/Rif polymerase chain reaction (PCR)-based assays are also not sensitive tools for the 
diagnosis of TBM, although they are highly specific [4, 5]. For these reasons, the differential 
diagnosis of TBM and VM depends on the judgment of the clinician.

Machine-learning techniques are very useful for resolving problems of discrimination and the 
development of diagnostic modules using machine-learning is an active research topic in the 
field of medicine. The differentiation between TBM and VM is also a matter of discrimination, 
so machine-learning techniques are expected to play auxiliary roles in guiding the diagnosis 
in situations where quick judgment is required. Deep learning is especially attractive because 
of its superior performance (e.g., accuracy) compared to many existing machine-learning 
models. Nevertheless, to the best of our knowledge, there exist no studies on the diagnostic 
role of deep learning techniques to differentiate between TBM and VM.

Thus, we investigated various machine-learning techniques, including deep learning models, 
for differentiating TBM from VM and compared the results with diagnoses made by clinicians.

MATERIALS AND METHODS

1. Study design & population
A retrospective cohort study was conducted at five teaching hospitals in the Korea (range of 
bed numbers, 642 – 2,705). The medical records of the cases between January 2000 - July 
2018 that met the following conditions were reviewed: 1) Mycobacterim tuberculosis growth 
from CSF, 2) positive nucleic acid amplification tests for M. tuberculosis, 3) diagnostic code 
of tuberculous meningitis (KCD A170), and 4) positive nucleic acid amplification tests for 
herpes simplex virus (HSV), varicella-zoster virus (VZV), or enterovirus. The exclusion 
criteria were incomplete medical records for review, lack of CSF fluid analysis, and patients 
younger than 18 years of age. This study was approved by the Institutional Review Board 
of Soonchunhyang University Bucheon Hospital (2018-09-026). The requirement for 
informed consent was waived because of the retrospective nature of this study, no patient 
interventions, and no additional specimen collections. All procedures involving human 
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participants were performed according to the ethical standards of the institutional and/or 
national research committees and in accordance with the 2013 Declaration of Helsinki and its 
later amendments or comparable ethical standards.

2. Definition and data collection
Meningitis was defined as CSF white blood cell (WBC) count >5 cells/mm3 with two or more 
of the following findings: headache, nausea/vomiting, photophobia, neck stiffness, and fever 
>38oC. Patients whose clinical presentation was indicative of meningitis and with positive 
CSF PCR results for HSV, VZV, or enterovirus PCR had confirmed viral meningitis. Patients 
whose clinical presentation was indicative of CNS infection had confirmed TBM if the CSF 
specimens were positive for M. tuberculosis based on the culture or the PCR assay. Patients 
whose clinical presentation was indicative of CNS infection plus a culture of other body 
fluids was positive for M. Tuberculosis, and without other known etiologies of meningitis, had 
probable TBM.

Since the number of cases was not large enough, only a limited number of features known as 
useful characteristics for differentiating between TBM and VM were searched and included 
in the analysis because of the overfitting concern. Based on the previous studies, data on age 
[6], duration of illness from the appearance of symptoms and onset of signs to hospital visit 
[7], vomiting [7], neurologic symptoms and signs [6], serum sodium [6], CSF glucose [8], 
CSF protein[8], and CSF adenosine deaminase (ADA) [9] were collected as discriminative 
features for machine-learning. Neurologic symptoms and signs were defined according 
to one of the following symptoms or signs: lethargy, confusion, cranial nerve palsy, 
hemiparesis, delirium, stupor, coma, seizures, hemiplegia, or paraparesis [6].

3. Model development and validation
We conducted experiments with different machine-learning models that included naïve 
Bayes (NB), logistic regression (LR), random forest (RF), support vector machine (SVM), 
and artificial neural network (ANN) models. The parameter settings of the machine-
learning models are summarized in Table 1. Note that the ANN model had a simple 
hierarchical structure with two layers to avoid overfitting. The ANN model is trained with 
L2 regularization with alpha 0.0001. We applied the take leave-one-out cross-validation 
(LOO-CV) to evaluate the models, wherein each data plays the role of test data, while the 
other remaining data are used for training, equivalent to 203-fold cross-validation. The 
experiments with all machine-learning models, except for the ANN, were conducted using 
the Weka tool, whereas the experiments with the ANN were performed using Tensorflow 1.12 
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Table 1. Parameter settings of the machine-learning models
Model Setting
Random forest - Maximum number of trees: 100
Naïve Bayes - No kernel estimator, so it uses a normal distribution
Logistic regression - Ridge: 1.0 × 10−8

- Training algorithm: Broyden–Fletcher–Goldfarb–Shanno
Support vector machine - Training algorithm: Sequential minimal optimization

- C: 1.0
- Epsilon: 1.0 × 10−12

- Kernel: PolyKernel (exponent: 1.0)
Artificial neural network - Hidden layers: [20, 5]

- Activation function: ReLU
- Number of epoch: 250
- Training algorithm: Adam (initial learning rate: 0.001)

https://icjournal.org


(Google, San Francisco, CA, USA). The experiments were conducted employing a computer 
of eight CPUs of i7-7700 3.6 GHz and two NVIDIA Geforce 1080 Ti.

Besides the machine-learning models, we collected results from six human clinicians: four 
residents in their fourth year of internal medicine and two board-certified infectious disease 
(ID) specialists with more than 10 years of experience. The summary of non-imputed medical 
information of each patient was shown to the the clinicians and they were asked to estimate 
the diagnosis (Supplementary Fig. 1).

4. Statistics
All statistical analyses were calculated using the SPSS Statistics version 25.0 (SPSS, Chicago, 
IL, USA) and the MedCalc version 19.3 (MedCalc Software Ltd., Ostend, Belgium). The 
categorical variables were compared using the Chi-squared test or the Fisher’s exact test. 
The continuous variables were analyzed using the Mann-Whitney U test. A non-significant 
Little’s missing complexly at random (MCAR) test, χ2 = 27.244, df = 22, P = 0.20, indicated an 
MCAR pattern. As the number of data was small, we retained all data by applying imputation 
algorithms. When we adopt an imputation algorithm to fill the missing values, the machine 
learning model performance (e.g., accuracy) depends on the imputation algorithm. So, we 
applied three imputation algorithms: 1) an imputing strategy of iterative round-robin fashion 
(IterativeImputer), 2) the iterative soft thresholding of Singular Vector Decomposition 
(SoftImputer), and 3) imputing by K-nearest neighbor (KnnImputer). The Delong method 
was used to calculate the area under the curve (AUC) of the receiver operator characteristic. 
The machine-learning model with the highest AUC value was chosen for comparison with 
human judgment, although the difference in the AUC values between machine learning 
models was statistically insignificant. Bootstrapping was used to compare the AUC between 
machine-learning and human judgment. Cohen’s kappa statistics were used to analyze the 
diagnostic agreement. All tests were two-tailed and differences were significant at P <0.05.

RESULTS

As shown in Figure 1, 234 patients were excluded and a total of 60 patients with confirmed or 
probable TBM and 143 patients with confirmed VM were included for training. Of 39 patients 
with confirmed TBM, the M. tuberculous complex was cultured in the CSF in only five patients. 
The median annual number of TBM was 3 patients (interquartile range [IQR], 1 - 7 patients). 
Of 144 VM, viral etiologies were as follows: HSV in 49 (34.0%) patients, VZV in 65 (45.1%) 
patients, and enterovirus in 29 (20.1%) patients. As shown in Table 2, the median age of 
the patients was 37 years (IQR, age 29 - 58 years), and the median duration of illness before 
the visit was five days (IQR, 3 - 7 days). Typically, 80% of patients complained of vomiting 
and 70% of patients had neurologic symptoms and signs. Older age, longer duration of 
illness before hospital visits, frequent neurologic symptoms and signs, lower serum sodium, 
lower CSF glucose, higher CSF protein, and higher CSF ADA were reported in TBM patients 
compared to VM patients.

The number of missing values was as follows: one for the duration of illness, one for 
vomiting, two for serum sodium, one for CSF glucose, one for protein, and 16 for CSF ADA. 
As shown in Table 3, all machine-learning models except SVM achieved the highest accuracy 
with ItrerativeImputer for matrix completion. Among the machine-learning models, the NB 
with SoftImputer had the highest sensitivity (80.0%; 95% confidence interval [CI], 67.7 - 
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89.2%) and SVM had the highest specificity (97.2%; 95% CI, 93.0 - 99.2%). However, ANN 
with IterativeImputer, LR with IterativeImputer, LR with KnnImputer (K = 2), and LR with 
KnnImputer (K = 3) had the highest accuracy (87.7%; 95% CI, 82.4 - 91.9%). The highest 
AUC value for differentiating TBM from VM was found in ANN with IterativeImputer among 
machine-learning models (0.85; 95% CI, 0.79 - 0.89).

The diagnostic performance of humans for differentiating TBM from VM is shown in Table 4  
and Fig. 2. The ANN with IterativeImputer model was chosen as a machine-learning model 
for the comparison with humans because it showed the highest value of AUC among the 
machine-learning models. Residents tended to diagnose less sensitively as TBM than 
ID specialists. The sensitivity of the residents was less than 53.7%, while that of the ID 
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Eligible patients
(n = 437)

Enrolled patients
(n = 203)

Excluded (n = 234)
1. Younger than 18 years old (n = 230)
2. CSF fluid analysis was not done (n = 3)
3. Incomplete medical records (n = 1)

TBM = TP
VM = FN

Machine learning
(ANN, RF, NB, LR, SVM)

Human (Four residents
and two ID specialists)

Viral meningitis (n = 143)
- All confirmed

Tuberculous meningitis (n = 60)
- Confirmed (n = 39)
- Probable (n = 21)

TBM = TP
VM = FN

TBM = FP
VM = TN

TBM = FP
VM = TN

Machine learning
(ANN, RF, NB, LR, SVM)

Human (Four residents
and two ID specialists)

Figure 1. Flow chart of the study. 
Patients whose clinical presentation was indicative of meningitis and with a positive CSF PCR result for HSV, VZV, or enterovirus PCR had confirmed viral 
meningitis. Patients whose clinical presentation was indicative of CNS infection had confirmed TBM if the CSF specimens were positive for Mycobacterim 
tuberculosis by culture or PCR assay. Patients whose clinical presentation was indicative of CNS infection plus a culture of other body fluids was positive for 
M. Tuberculosis, without other known etiologies of meningitis, had probable TBM. True positive means a correct diagnosis of tuberculous meningitis and true 
negative means a correct diagnosis of viral meningitis. 
ANN, artificial neural network; RF, random forest; NB, naïve Bayes; LR, logistic regression; SVM, support vector machine; ID, infectious diseases; TBM, 
tuberculous meningitis; TP, true positive; VM, viral meningitis; FN, false negative; FP, false positive; TN, true negative.

Table 2. Comparison of features between tuberculous and viral meningitis
Features All (N = 203) Tuberculous (N = 60) Viral (N = 143) P-value
Median age, years (IQR) 37 (29 - 58) 49 (33 - 64) 34 (29 - 55) <0.001
Median symptom duration before the visit, days (IQR) 5 (3 - 7) 9 (6 - 15) 4 (2 - 6) <0.001
Vomiting (%) 80 (39.4) 28 (46.7) 52 (36.4) 0.21
Neurologic symptoms and signs (%) 70 (34.5) 39 (65.0) 31 (21.5) <0.001
Median serum sodium, mg/dl (IQR) 137 (134 - 139) 133 (128 - 136) 138 (136 - 140) <0.001
Median CSF glucose, mg/dl (IQR) 53.3 (45.1 - 66.0) 41.6 (28.8 - 61.5) 57.6 (49.0 - 67.0) <0.001
Median CSF protein, mg/dl (IQR) 117.0 (67.9 - 169.6) 175.5 (118.7 - 317.1) 101 (56.3 - 141.3) <0.001
Median CSF ADA, IU/L (IQR) 7 (3 - 12) 14 (8 - 21) 5 (3 - 8) <0.001
IQR, interquartile range; CSF, cerebrospinal fluid; ADA, adenosine deaminase.

https://icjournal.org


specialists was more than 65%. The AUCs between the residents were not statistically 
different. Also, the value of AUC was not statistically different between ID specialist #1 and 
the ID specialist #2 (P = 0.38) (Supplementary Table 1). The higher AUCs of the ID specialists 
were found, although these differences were only statistically significant between the ID 
specialist #1 and the resident #2 (P = 0.01), the ID specialist #2 and resident #1 (P = 0.02), 
the ID specialist #2 and resident #2 (P = 0.003), and the ID specialist #2 and resident #3 
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Table 3. Diagnostic performances of various machine-learning algorithms for differentiating tuberculous from viral meningitis
Machine-learning 
algorithm

Matrix completion TP FP TN FN Sensitivity  
(% [95% CI])

Specificity  
(% [95% CI])

Accuracy  
(% [95% CI])

AUC  
(95% CI)

Artificial neural 
network

IterativeImputer 46 11 132 14 76.7 (63.9 - 86.6) 92.3 (86.7 - 96.1) 87.7 (82.4 - 91.9) 0.85 (0.79 - 0.89)
SoftImputer 41 20 123 19 68.3 (55.0 - 79.7) 86.0 (79.2 - 91.2) 80.8 (74.7 - 86.0) 0.77 (0.71 - 0.83)
KnnImputer (K = 1) 43 11 132 17 71.7 (58.6 - 82.5) 92.3 (86.7 - 96.1) 86.2 (80.7 - 90.6) 0.82 (0.76 - 0.87)
KnnImputer (K = 2) 43 10 133 17 71.7 (58.6 - 82.5) 93.0 (87.5 - 96.6) 86.7 (81.2 - 91.0) 0.82 (0.76 - 0.87)
KnnImputer (K = 3) 42 12 131 18 70.0 (56.8 - 81.2) 91.6 (85.8 - 95.6) 85.2 (79.6 - 89.8) 0.81 (0.75 - 0.86)
KnnImputer (K = 4) 42 12 131 18 70.0 (56.8 - 81.2) 91.6 (85.8 - 95.6) 85.2 (79.6 - 89.8) 0.81 (0.75 - 0.86)

Random forest IterativeImputer 42 11 132 18 70.0 (56.8 - 81.2) 92.3 (86.7 - 96.1) 85.7 (80.1 - 90.2) 0.81 (0.75 - 0.86)
SoftImputer 38 9 134 22 63.3 (49.9 - 75.4) 93.7 (88.4 - 97.1) 84.7 (79.0 - 89.4) 0.79 (0.72 - 0.84)
KnnImputer (K = 1) 40 13 130 20 66.7 (53.3 - 78.3) 90.9 (85.0 - 95.1) 83.7 (77.9 - 88.5) 0.79 (0.73 - 0.84)
KnnImputer (K = 2) 41 11 132 19 67.8 (54.4 - 79.4) 91.3 (86.7 - 96.1) 85.2 (79.5 - 89.8) 0.80 (0.74 - 0.85)
KnnImputer (K = 3) 42 14 129 18 70.0 (56.8 - 81.2) 90.2 (84.1 - 94.5) 84.2 (78.5 - 89.0) 0.80 (0.74 - 0.85)
KnnImputer (K = 4) 40 11 132 20 66.7 (53.3 - 78.3) 92.3 (86.7 - 96.1) 84.7 (79.0 - 89.4) 0.80 (0.73 - 0.85)

Naïve Bayes IterativeImputer 36 11 132 24 60.0 (46.5 - 72.4) 92.3 (86.7 - 96.1) 82.8 (76.8 - 87.7) 0.76 (0.70 - 0.82)
SoftImputer 48 24 119 12 80.0 (67.7 - 89.2) 83.2 (76.1 - 88.9) 82.3 (76.3 - 87.3) 0.82 (0.76 - 0.87)
KnnImputer (K = 1) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)
KnnImputer (K = 2) 39 13 130 21 65.0 (51.6 - 76.9) 90.9 (85.0 - 95.1) 83.3 (77.4 - 88.1) 0.78 (0.72 - 0.84)
KnnImputer (K = 3) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)
KnnImputer (K = 4) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)

Logistic regression IterativeImputer 44 9 134 16 73.3 (60.3 - 83.9) 93.7 (88.4 - 97.1) 87.7 (82.4 - 91.9) 0.84 (0.78 - 0.88)
SoftImputer 43 15 128 17 71.7 (58.6 - 82.5) 89.5 (83.3 - 94.0) 84.2 (78.5 - 89.0) 0.81 (0.75 - 0.86)
KnnImputer (K = 1) 42 9 134 18 70.0 (56.8 - 81.2) 93.7 (88.4 - 97.1) 86.7 (81.2 - 91.0) 0.82 (0.76 - 0.87)
KnnImputer (K = 2) 42 7 136 18 70.0 (56.8 - 81.2) 95.1 (90.2 - 98.0) 87.7 (82.4 - 91.9) 0.83 (0.77 - 0.88)
KnnImputer (K = 3) 42 7 136 18 70.0 (56.8 - 81.2) 95.1 (90.2 - 98.0) 87.7 (82.4 - 91.9) 0.83 (0.77 - 0.88)
KnnImputer (K = 4) 41 7 136 19 68.3 (55.0 - 79.7) 95.1 (90.2 - 96.1) 87.2 (81.8 - 91.5) 0.82 (0.76 - 0.87)

Support vector 
machine

IterativeImputer 34 6 137 26 56.7 (43.2 - 69.4) 95.8 (91.1 - 98.5) 84.2 (76.5 - 89.0) 0.76 (0.70 - 0.82)
SoftImputer 45 17 126 15 75.0 (62.1 - 85.3) 88.1 (81.6 - 92.9) 84.2 (78.5 - 89.0) 0.82 (0.76 - 0.87)
KnnImputer (K = 1) 33 4 139 27 55.0 (41.6 - 67.9) 97.2 (93.0 - 99.2) 84.7 (79.0 - 89.4) 0.76 (0.70 - 0.82)
KnnImputer (K = 2) 34 8 135 26 56.7 (43.2 - 69.4) 94.4 (89.3 - 97.6) 83.3 (77.4 - 88.1) 0.76 (0.69 - 0.81)
KnnImputer (K = 3) 34 8 135 26 56.7 (43.2 - 69.4) 94.4 (89.3 - 97.6) 83.3 (77.4 - 88.1) 0.76 (0.69 - 0.81)
KnnImputer (K = 4) 35 7 136 25 58.3 (44.9 - 70.9) 95.1 (90.2 - 98.0) 84.3 (78.5 - 89.0) 0.77 (0.70 - 0.82)

Testing was conducted using the leave-one-out cross-validation.
True positive means a correct diagnosis of tuberculous meningitis and true negative means a correct diagnosis of viral meningitis.
TP, true positive; FP, false positive; TN, true negative; FN, false negative; AUC, area under the receiver operating characteristics curve; 95% CI, 95% confidence 
interval.

Table 4. Diagnostic performance of humans for differentiating tuberculous from viral meningitis
TP FP TN FN Sensitivity  

(% [95% CI])
Specificity  

(% [95% CI])
Accuracy  

(% [95% CI])
AUC  

(95% CI)
Artificial neural network 

with IterativeImputer
P1a P2b

Resident #1 32 20 123 28 53.3 (40.0 - 66.3) 86.0 (79.2 - 91.2) 76.4 (69.9 - 82.0) 0.70 (0.63 - 0.76) <0.001 0.0002
Resident #2 23 7 136 37 38.3 (26.1 - 51.8) 95.1 (90.2 - 96.0) 78.3 (72.0 - 83.8) 0.67 (0.60 - 0.73) <0.001 <0.001
Resident #3 31 20 123 29 51.7 (38.4 - 64.8) 86.0 (79.2 - 91.2) 75.9 (69.4 - 81.6) 0.69 (0.62 - 0.75) <0.001 0.0001
Resident #4 30 9 134 30 50.0 (36.8 - 63.2) 93.7 (88.4 - 97.1) 80.8 (74.7 - 86.0) 0.72 (0.65 - 0.78) <0.001 0.0004
ID specialist #1 39 18 125 21 65.0 (51.6 - 76.9) 87.4 (80.8 - 92.4) 80.8 (74.7 - 86.0) 0.76 (0.70 - 0.82) <0.001 0.03
ID specialist #2 46 26 117 14 76.7 (64.0 - 86.6) 81.8 (74.5 - 87.8) 80.3 (74.2 - 85.6) 0.79 (0.73 - 0.85) <0.001 0.16
aCohen’s kappa statistic was used to test the diagnostic agreement between machine-learning and human judgment.
bComparison of the AUC of the machine-learning with that of human judgment.
True positive means a correct diagnosis of tuberculous meningitis and true negative means a correct diagnosis of viral meningitis.
TP, true positive; FP, false positive; TN, true negative; FN, false negative; AUC, area under the receiver operating characteristics curve; 95% CI, 95% confidence 
interval; ID, infectious disease.
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(P = 0.01) (Supplementary Table 1). The AUC of the ANN model was statistically higher 
than those of all the residents. Also, the diagnostic performance of the ANN model was 
statistically higher than the ID specialist #2 (P = 0.03) and comparable to the ID specialist 
#1 (P = 0.16), although the diagnostic agreement was statistically different between the 
machine-learning and ID specialists.

DISCUSSION

Our findings showed the potential of the machine-learning models, especially the ANN 
model, to distinguish TBM from VM. Specifically, the diagnostic performance of the 
machine-learning models was more accurate than that of the non-expert clinicians and was 
comparable to the judgment of the experts. To the best of our knowledge, this is the first 
study to differentiate between TBM and VM using various machine-learning models.

There have been several studies on the differential diagnosis between TBM and VM. In a 
retrospective study by Hristea et al. [6], symptom duration, advanced neurologic status, CSF 
glucose ratio <0.5, and CSF protein >100 mg/dl were identified to be associated with TBM 
and not VM. A model using these significant variables showed excellent sensitivity (92%, 
95% CI: 87 - 97), specificity (94%, 95% CI: 92 - 97), and the AUC value (0.977, 95% CI: 0.964 
- 0.990) for the diagnosis of TBM. Lee also reported that a grade scoring system including 
the variables of hyponatremia, CSF lactate dehydrogenase >70 IU/L, CSF protein 160 mg/dl, 
cranial nerve palsy, voiding difficulty, and confusion had 89.4% sensitivity, 90.4% specificity, 
and 0.901 accuracy (95% CI: 0.839 - 0.963) to differentiate TBM from VM [7]. Despite 
the excellent diagnostic performance of the previous models, there were some critical 
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Figure 2. A plot of the diagnostic performance of the machine learning and clinicians for differentiating 
tuberculous from viral meningitis. 
The area under curves (AUC) of receiver operating characteristics between the residents was not statistically 
different. Also, the value of the AUC was not statistically different between the ID specialist #1 and the ID 
specialist #2 (P = 0.38). The higher AUCs of the ID specialists were found, although the differences were only 
statistically significant between the ID specialist #1 and resident #2 (P = 0.01), the ID specialist #2 and resident 
#1 (P = 0.02), the ID specialist #2 and resident #2 (P = 0.003), and the ID specialist #2 and resident #3 (P = 
0.01). The AUC of the ANN model was statistically higher than those of all the residents. Also, the diagnostic 
performance of the ANN model was statistically higher than the ID specialist #2 (P = 0.03) and comparable to the 
ID specialist #1 (P = 0.16). 
ANN, artificial neural network; LR, logistic regression; ID, infectious diseases.
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limitations. First, there is a concern of overfitting, because the previous studies comprised of 
too many variables, despite the small number of cases. Second, the diagnostic performance of 
these models developed in one center cannot be assured in other centers. Third, almost all the 
reported studies included cases of possible TBM. Marais et al. proposed uniform definitions 
of probable and possible TBM [10]. However, the definition of possible TBM showed low 
specificity [11]. Since the definition of possible TBM involves the same variables included in the 
diagnostic models, the diagnostic performance of the previous models can be overestimated. 
Thus, we included only cases with positive culture or PCR results. Our study design increased 
the reliability of our results, although the diagnostic performance was weaker compared with 
the outcomes of previous studies. Additionally, the variables included in our model were easily 
and autonomously accessible in data acquired from the electronic health records. Thus, it 
should not be difficult to develop a program for application in clinical practice.

As shown in Table 4, the ID specialists tended to more sensitively diagnose TBM than the 
residents, although their sensitivity was not satisfactory. The higher sensitivity demonstrated 
by the ID specialists may be the result of knowledge and experience with possible TBM cases. 
Interestingly, this tendency of the ANN model was somewhat similar to the ID specialists, so 
the ANN model’s behavior can be associated with the ID specialists.

There is no statistically significant difference in the AUC values of each machine learning 
model. Considering the cost and effort required for machine learning, a statistical analysis 
such as logistic regression may be more favorable than ANN. Statistical analysis is a good 
method of research, but it is markedly different from the studies of the machine learning 
field. As described in the report by Bradley A. Fritz [12], the statistical analysis may be 
practically limited because it renders the knowledge to clinicians but is not suitable for 
developing real-world applications (e.g., forecasting outcomes). As the purpose of this study 
was to investigate the feasibility of machine learning models for 'classification' between TBM 
and VM, we chose the method of ‘machine-learning’.

This study had limitations because of the small number of data used for learning. This limited 
the number of features for the analysis and accuracy of the models. It was found that deeper 
structures usually have better performance (e.g., accuracy), but it does not mean that deeper 
structures are 'always' better. It depends on the data size and complexity of the problem. 
We found that the ANN with 2 layers is enough to solve our problem. Also, the validation 
data set was not separated, although the LOOCV must be preferable if it is computationally 
feasible in the machine learning fields [13, 14]. Because of the unbalanced sample size, it is 
not difficult to achieve 70% accuracy. Previous studies also included only small numbers of 
confirmed cases, as well as probable or possible cases that were variously defined, because 
only a few confirmed cases can be collected from a center over a decade. To collect maximal 
cases possible, the probable TBM was included in our study. It is unlikely that VM will develop 
simultaneously with the onset of another site of tuberculosis. It will be not easy to reproduce 
similar studies by collecting more confirmed cases, although probable TBM was included 
in our study. Using a cloud-based system for globally sharing the data from experts may be 
a solution to these limitations. Additionally, further information such as medical records of 
present illness and brain radiologic findings was provided to the clinicians. Nevertheless, the 
machine-learning had a similar diagnostic performance with the ID specialists. Also, only 
a limited number of clinicians participated in the study. In future research, a proper study 
design is necessary to provide the same data to humans and machines.
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In conclusion, there is a possibility that machine-learning could play a role in differentiating 
TBM from VM. Further studies should be conducted to improve the performance of the 
machine-learning algorithms and to assess their safety and usefulness in real clinical practice.
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