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ABSTRACT
The discovery of novel autoantibodies in neurological disorders contributes to a better 
understanding of its pathogenesis, improves the accuracy of diagnosis, and leads to 
new treatment strategies. Advances in techniques for the screening and detection of 
autoantibodies have enabled the discovery of new antibodies in the central nervous 
system (CNS) and neuromuscular diseases. Cell-based assays using live or fixed cells 
overexpressing target antigens are widely used for autoantibody-based diagnosis in 
clinical practice. Common pathogenic autoantibodies are unknown in most patients 
with multiple sclerosis (MS) and chronic inflammatory demyelinating polyradiculoneu-
ropathy (CIDP). Novel pathogenic autoantibodies to aquaporin-4 and myelin oligoden-
drocyte glycoprotein (MOG) have been identified in neuromyelitis optica spectrum dis-
order and MOG antibody-associated disease, respectively. These diseases have clinical 
similarities to MS, but with the discovery of pathogenic autoantibodies, they are now 
recognized as distinct disease entities. Antibodies to paranodal membrane proteins 
such as neurofascin-155, contactin‑1, contactin‑associated protein‑1 in CIDP and mus-
cle-specific kinase and low-density lipoprotein receptor–related protein 4 in myasthe-
nia gravis were added to the profiles of autoantibodies in neurological disorders. De-
spite the relatively low frequency of seropositivity, autoantibody detection is currently 
essential for the clinical diagnosis of CNS and neuromuscular autoimmune disorders, 
and differential approaches to seropositive patients will contribute to more personal-
ized medicine. We reviewed recent discoveries of autoantibodies and their clinical im-
plications in CNS and neuromuscular disorders.
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INTRODUCTION

The immune response protects the body from foreign sub-
stances. Excessive or insufficient immune responses can lead 
to immune disorders. Immune-mediated diseases of the cen-
tral nervous system (CNS) or neuromuscular system cause 
antibody- or cell-mediated inflammation and tissue injury, 
which are potentially reversible through immunosuppression 
or modulation. Extensive research to define autoimmune 
pathogenesis and biomarkers has contributed to a better un-
derstanding of the diseases and resulted in a rapid expansion 
of the spectrum of autoimmune CNS and neuromuscular dis-
eases [1]. The discovery of novel autoantibodies in clinically 
distinctive diseases has prompted the development of new or 
revised clinical diagnostic criteria according to the serostatus 
and new treatment algorithms based on antibody-mediated 
pathogenesis. Technological developments could increase 
the detection rate of autoantibodies and help identifying nov-
el pathogenic antibodies in patients who have been regarded 
as seronegative, which will stratify the diseases in the future. 
Here, we reviewed the recent discovery of autoantibodies in 
the CNS and neuromuscular disorders and described their 
impact on clinical practice.

TYPES OF AUTOANTIBODIES

B cells stimulated by activated T helper cells produce anti-
bodies. Disruption of immune tolerance induces B cells to de-
velop antibodies against self-antigens [2]. These autoantibod-
ies can be classified according to the cellular location of the 
target antigens. Some of autoimmune diseases have antibod-
ies targeting intracellular proteins, such as nuclear DNA or 
transcription factors; T-cells could play a central role in the 
pathogenesis of those diseases. Antibodies targeting extracel-
lular proteins such as ion channels and receptors are usually 
pathogenic and can serve as diagnostic markers or therapeu-
tic targets [3]. Antibodies binding to neuronal or glial cell sur-
face antigens such as aquaporin-4 (AQP4) or leucine-rich glio-
ma inactivated protein 1 (LGI1) are pathogenic by inducing of 
inflammation at binding sites or blocking of neural transmis-
sion; these neuronal or glial surface antigen-specific autoanti-
bodies play important roles as potential therapeutic targets 
as well as biomarkers for diagnosis [1,4].

Pathogenic mechanisms of autoantibodies can be affected 
by the immunoglobulin isotype and subclass of autoantibod-
ies [4]. Autoantibody immunoglobulin G (IgG) subclasses 1 
and 3 often cause specific tissue injuries by complement or 

immune cell activation, but IgG subclass 4 (IgG4) cannot acti-
vate the classic complement pathway or activate immune 
cells [5]. The pathogenic mechanisms of IgG4 autoantibodies 
are usually different from those of IgG1 or 3 autoantibodies; 
the pathogenicity of IgG4 is related to the blockade of enzy-
matic activity or protein-protein interactions of the target an-
tigen [6]. It is known that several antigens targeted by IgG4 
autoantibodies are distributed in the CNS or peripheral ner-
vous system [5]; representative IgG4 subclass autoantibodies 
of neurological disorders include muscle-specific kinase anti-
body (MuSK-Ab) and neurofascin 155 antibody (NF155-Ab). 
Table 1 summarizes the various types of autoantibodies and 
their target antigens in neurological disorders.

DETECTION OF AUTOANTIBODIES

To detect autoantibodies, binding of a patient’s antibody to 
its target antigen is essential; the target antigen can be pre-
sented through tissue-based, protein-based, or cell-based as-
says (Fig. 1) [7]. Enzyme-linked immunoassay (ELISA) using 
patient sera is a common tool for detecting autoantibodies in 
routine clinical practice. The size and conformational struc-
ture of the protein may limit the accuracy of this method. Im-
munoassays using radioisotopes have similar limitations. Tis-
sue-based immunohistochemical staining of animal brains is 
useful for the screening of unknown antibodies. Cell-based 
immunocytochemistry assay (CBA) and flow immunoprecipi-
tation assay (FIPA) using cells overexpressing specific proteins 
are powerful tests with high sensitivity and specificity to de-
tect antibodies to specific known antigens. Recently identi-
fied autoantibodies of neurological disorders with pathogen-
ic potential usually target cell surface proteins [1]. Therefore, 
CBA is widely used for the detection of these autoantibodies 
and can maintain conformational epitopes through transfect-
ed cells expressing natively folded proteins [7]. The CBA can 
be carried out using either indirect immunofluorescence mi-
croscopy (IIF) or flow cytometry methods; CBA using IIF is 
widely used but is semi-quantitative, but CBA by flow cytom-
etry is an automated method with quantification that reduc-
es human bias [8]. And when the CBA is performed in-house, 
it requires the genetic information of antigenic epitope, trans-
fected cell culture, and skilled analysis of cytochemical stain-
ing results, all of which affect the accuracy of the test and lim-
it its application in clinical diagnosis. Commercial kits using 
prefixed transfected cells can be available in routine clinical 
practice, but they are usually expensive and require expertise 
with the interpretation of IIF assays. Multicenter studies that 
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compare the sensitivity, specificity, and reproducibility of an-
tibody assays are ongoing to improve the international stan-
dardization of assays [9,10]. These efforts to improve the sen-
sitivity and specificity of assays are important and could facil-
itate the understanding of the diseases and change clinical 
practice; a good example of CBA that has reestablished the 
clinical implications of autoantibodies is the myelin oligoden-
drocyte glycoprotein antibody (MOG-Ab) [11]. Previous stud-
ies of MOG-Ab detected by ELISA and Western blotting 
showed inconsistent results in patients with multiple sclerosis 
(MS) and controls. However, CBA with full-length human MOG 
and IgG1- or IgG Fc-specific secondary antibodies enables the 
detection of conformation-sensitive MOG-Ab to identify a 
unique spectrum of diseases; MOG antibody-associated dis-

ease (MOGAD) is now considered a CNS inflammatory disease 
entity distinct from neuromyelitis optica spectrum disorder 
(NMOSD) or MS [11,12].

AUTOANTIBODIES IN CNS  
INFLAMMATORY DISORDERS

Multiple sclerosis
MS is a rare disease in Korea and is the most common cause 
of CNS inflammatory diseases in Western countries [13]. Its 
pathogenesis is complex, and the mechanism underlying the 
triggering or progression of the disease is not fully under-
stood. Clinical and experimental evidences indicate the auto-
immune pathogenesis of MS; however, an MS-specific auto-

Table 1. Autoantibodies in central nervous system and neuromuscular autoimmune disorders

Antigen Clinical syndrome/symptoms
Main antibody 

isotype
Recommended 

test
Frequency

AQP4 NMOSD: ON, LETM, APS. Diencephalic brain syndrome IgG1 CBA ~80%

MOG MOGAD: CRION, ADEM, TM IgG1 CBA ~50% in seronegative NMOSD

~60%–90% in CRION

NMDAR Autoimmune encephalitis IgG1 CBA 5%–20% in encephalitis of unknown causes

LGI1 LE/FBDS IgG4/IgG1 CBA ~20% in autoimmune encephalitis

88% in LE with FBDS

CASPR2 LE, Morvan’s syndrome IgG4 CBA 3% in autoimmune encephalitis

NF155 CIDP/tremor, ataxia IgG4 CBA ~5%–10%

CNTN1 CIDP/acute or aggressive onset IgG4 CBA ~5%

Caspr1 CIDP/neuropathic pain IgG4 CBA <1%

AChR MG IgG1 RIPA ~70%–80%

MuSK Seronegative MG/more severe with muscular atrophy IgG4 RIPA/CBA ~20%–70% in seronegative MG

LRP4 Double-seronegative MG/milder symptoms IgG1 7%–33% in double seronegative MG

MDA5 Myositis/interstitial lung disease IgG IP ~1%–30%

NXP2 Dermatomyositis/cancer association IgG IP ~2%–17%

TIF1γ Dermatomyositis/cancer association IgG IP 7%

SRP Immune-mediated necrotizing myositis IgG IP ~2%

HMGCR Immune-mediated necrotizing myositis IgG IP ~6%

cN1a IBM IgG ELISA ~4%–21%

AQP4, aquaporin-4; NMOSD, neuromyelitis optica spectrum disorder; ON, optic neuritis; LETM, longitudinally extensive transverse myelitis; APS, 
area postrema syndrome; IgG, immunoglobulin G; CBA, cell-based assay; MOG, myelin oligodendrocyte glycoprotein; MOGAD, MOG-associated 
disease; CRION, chronic recurrent isolated optic neuritis; ADEM, acute disseminated encephalomyelitis; TM, transverse myelitis; NMDAR, N-meth-
yl-d-aspartate receptor; LGI1, leucine-rich glioma-inactivated 1; LE, limbic encephalitis; FBDS, faciobrachial dystonic seizure; CASPR2, contactin-as-
sociated protein–like 2; NF155, neurofascin 155; CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; CNTN1, contactin-1; Caspr1, 
contactin-associated protein 1; AChR, acetylcholine receptor; MG, myasthenia gravis; RIPA, radioimmunoprecipitation assay; MuSK, muscle-specif-
ic kinase; LRP4, low-density lipoprotein receptor-related protein 4; MDA5, melanoma differentiation-associated gene 5; IP, immunoprecipitation; 
NXP2, nuclear matrix protein 2; TIF1γ, transcription intermediary factor 1γ; SRP, signal recognition particle; HMGCR, 3-hydroxy-3-methylglutaryl 
CoA reductase; cN1a, cytosolic 5’-nucleotidase 1A; IBM, inclusion body myositis; ELISA, enzyme-linked immunosorbent assay. 
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antibody has not been identified [14]. Pathological studies 
showed IgG and complement deposition in brain lesions in 
some cases of MS, suggesting the contribution of humoral 
immunity and autoantibodies in the pathogenesis [15]; some 
investigators reported that a subset of patients with MS had 
autoantibodies inducing demyelinating responses [16,17]. 
However, screening of autoantigen candidates in MS using 
advanced tools for peptide and protein analyses has demon-
strated no common target antigens, suggesting heterogeneity 
of the pathomechanisms of MS [17,18]. Although no single 
autoantibody in MS has been demonstrated, the search for 
autoantibodies has identified distinct CNS inflammatory dis-
orders characterized by specific autoantibodies such as AQP4 
antibody (AQP4-Ab) and MOG-Ab.

T cells have been considered as major players in the patho-
genesis of MS; animal models of MS have shown that CD4+ T 
cells play an important role in experimental autoimmune en-
cephalitis (EAE); for example, interleukin 17 (IL-17)-secreting T 
helper 17 (Th17) cells dysregulate the blood-brain barrier 
(BBB) and stimulate the inflammatory process within the CNS 
[19]. Thus, in terms of treatment, disease-modifying therapies 
for MS mainly target T cell immunity. Interferon-beta and 
glatiramer acetate promote anti-inflammatory Th2 cytokines 
and increase T regulatory cells [20]. Natalizumab, an α4 integ-
rin monoclonal antibody, prevents immune cells in the blood 
from crossing the BBB [20]. However, with growing evidence 
from experimental and human pathologies and the success 
of clinical trials targeting B cells in MS patients, the impor-
tance of antibody-dependent or antibody-independent func-
tions of B cells in MS has drawn attention [21]. B cells interact 
with T cells and promote the secretion of proinflammatory 
cytokines; conversely, B cells may produce unidentified auto-
antibodies or inflammatory cytokines. In addition, oligoclo-
nal IgG bands (OCB) in the cerebrospinal fluid (CSF) of MS pa-
tients arise from clonally expanded B cells [22]. Antibodies of 
OCB bind to certain virus/viral proteins or various intracellular 
proteins that might have been released during tissue injury 
[23-26], suggesting the pathogenic roles of B cells through hu-
moral immunity in MS [22]. Anti-CD20 monoclonal antibod-
ies, such as rituximab, ocrelizumab, and ofatumumab, have 
demonstrated excellent efficacy in reducing relapses and 
progression in relapsing-remitting multiple sclerosis (RRMS). 
B cells are now considered to play primary roles in the devel-
opment and progression of the disease. And B cell-depleting 
therapies are becoming the mainstream treatment in MS [27].

Neuromyelitis optica spectrum disorder
Neuromyelitis optica (NMO) or Devic’s disease was originally 
described as monophasic simultaneous optic neuritis (ON) 
and transverse myelitis. Relapsing NMO with brain/brainstem 
involvement, which is more prevalent in Asian than that in 
Western countries and formerly known as Asian-type MS, was 
difficult to differentiate clinically from RRMS. In 2004, NMO- 
specific IgG (NMO-IgG) from patients with NMO was discov-
ered using tissue-based IIF assays [28]. Subsequent studies 
have demonstrated that NMO-IgG is pathogenic and directed 
against a water channel, AQP4, that is abundantly expressed 
in astrocyte foot processes [29]; this autoantibody was detect-
ed in NMO patient sera with high sensitivity and specificity. 
The differentiation of the disease according to the presence 
of autoantibodies facilitated the understanding of the dis-
ease, and many studies have shown the diversity of clinical 
and magnetic resonance imaging (MRI) characteristics in pa-
tients with NMO [30]. The term NMOSD encompassing these 
clinical diversities of NMO was introduced in 2007 [31]. Dis-
tinctive brain syndromes of NMOSD include the area post-
rema syndrome, acute brainstem syndrome, acute narcolep-
sy/diencephalic syndrome, and symptomatic cerebral syn-
drome. The locations of brain lesions suggest the pathoge-
netic implications of AQP4-Ab; AQP4-Ab needs to gain access 
to AQP4 through disrupted/permeable BBB; therefore, prefer-
ential locations of brain lesions in NMOSD include circumven-
tricular organs characterized by a lack of BBB, such as the 
area postrema [32]. In 2015, the international consensus diag-
nostic criteria for NMOSD were proposed and stratified into 
AQP4-Ab-seropositive and AQP4-Ab-seronegative NMOSDs, 
emphasizing the importance of the presence of AQP4-Ab in its 
diagnosis [33].

The clinical and radiologic features of AQP4-Ab-seronega-
tive NMOSD are mostly similar to those of AQP4-Ab-seroposi-
tive NMOSD. But MOG-Ab is detected in some patients fulfill-
ing the criteria of AQP4-Ab-seronegative NMOSD, so this dis-
ease category appears to be heterogeneous in nature [34]. 
AQP4s in astrocytes are expressed by alternatively spliced 
transcripts encoding two major isoforms, M1 and M23 [35]. 
M23-AQP4 assembled in membranes display a regular square 
distribution called orthogonal arrays of particles (OAPs), 
which have a higher affinity for AQP4-Ab than that of M1-
AQP4, which does not form OAP. In fact, the AQP4-Ab binding 
assay with M23-AQP4 improved the detection sensitivity from 
70% to 97% for NMO-IgG derived from human serum samples 
of NMOSD [36]. These M23-AQP4-binding NMO-IgGs are effec-
tively detected by several experimental methods, such as ELI-
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SA and CBA, which are more sensitive than animal brain tis-
sue-based IIF. Moreover, based on a systematic review by Wa-
ters et al. [37], the live cell-based assay (76.5%) was more sen-
sitive for AQP4-Ab detection than that in ELISA (61.8%), IIF as-
says (61.2%), radioimmunoprecipitation assay (55.2%), and 
FIPA (48.5%). The specificity of CBA (99.8%) was also higher 
than that of other detection methods, such as ELISA (96.6%) 
or IIF assays (97.4%). Cell lines like human embryonic kidney 
cells (HEK293) transiently transfected with human AQP4 ex-
press conformationally folded AQP4 on the cell membrane, 
which enables CBA to be superior to ELISA using linear pep-
tides [10,37]. In pursuit of identifying antibodies from sero-
negative NMOSD, MOG-Ab particularly attracted attention; up 
to 40% of patients with AQP4-Ab-seronegative NMOSD may 
show MOG-Ab positivity [38]. Currently, MOGAD is considered 
a disease different from NMOSD. We have gained a deeper 

understanding of NMOSD with the discovery and improve-
ment of autoantibody testing, and recently new treatment 
options for NMOSD have received U.S. Food and Drug Admin-
istration approval. Eculizumab (anti-C5), inebilizumab (an-
ti-CD19), and satralizumab (anti-IL-6 receptor) showed high 
efficacy in preventing relapses in AQP4-Ab-NMOSD. Thus, a 
new treatment era for NMOSD is emerging, although therapy 
of AQP4-Ab-seronegative NMOSD remains a challenge.

Myelin oligodendrocyte glycoprotein antibody- 
associated disease
MOGAD has recently been recognized as a distinct clinical en-
tity with the detection of MOG-Ab, which encompasses vari-
able clinical phenotypes, including ON, acute disseminated 
encephalomyelitis (ADEM), AQP4-Ab-negative NMOSD, en-
cephalitis, myelitis, and brainstem encephalitis [39]. MOG it-

Fig. 1. (A-J) Examples of cell-based assays and immunoblots. Representative fluorescence microscopic images of cell-based assays: anti-
aquaporin-4 antibody (AQP4-Ab), anti-myelin oligodendrocyte glycoprotein antibody (MOG-Ab), and anti-neurofascin 155 antibody (NF155-Ab) 
in-house cell-based assays and anti-N-methly-d-aspartate receptor antibody (NMDAR-Ab) and anti-leucine-rich glioma inactivated 1 antibody 
(LGI1-Ab) commercial cell-based assays show negative results in the upper row (A, B, C, D, E) and positive results in the lower row (F, G, H, I, J). 
Sera with autoantibodies showed the binding of anti-human immunoglobulin G (IgG) antibody (green fluorescence) indicating positive results. 
In the NF155-Ab in-house assays (C&H), both green and red fluorescence by green fluorescent protein (GFP)-labeled NF155 and Alexa 657 
conjugated anti-human IgG antibody were observed in positive sera. (K, L) The commercial immunoblotting for myositis-specific antibodies. 
The negative sample reacted only in the control region (K), but the positive sample showed binding to specific antigenic sites on the 
immunoblot strip, followed by the reaction of the enzyme conjugate catalyzing color (L).
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self has long been considered a target antigen in CNS demye-
linating diseases including MS and ADEM because MOG is lo-
calized on the surface of the myelin sheath, and EAE animal 
model for MS can be induced by MOG peptides and MOG-re-
active T cells. However, the clinical implications of MOG-Ab in 
MS were unclear when MOG-Ab was assayed through ELISA 
and Western blotting. Since Mader et al. [40] and O’Connor et 
al. [41] found conformation-sensitive MOG-Ab in patients with 
certain clinical syndromes of CNS inflammatory disorders, re-
search is ongoing to understand the pathogenic roles of MOG-
Ab and develop more accurate detection methods. A multi-
center comparison study showed that MOG-Ab CBA was an 
effective method [42]. The CBA using live cells transfected 
with full-length human MOG and anti-IgG1 as secondary anti-
body showed high specificity for non-MS demyelinating dis-
eases [43]. A meta-analysis revealed that MOGAD represented 
9.3% of NMOSD and 32.5% of AQP4-Ab-seronegative NMOSD 
[44]. The clinical and imaging characteristics of MOGAD over-
lap partly with those of MS and AQP4-Ab-seropositive NMOSD, 
whereas features distinguishing MOGAD from MS or NMOSD 
can also be determined [45]. A recent pathological study 
showed that perivenous demyelination with MOG-dominant 
myelin loss was a distinctive finding of MOGAD, which is ap-
parently different from that of MS and NMOSD [46]. For exam-
ple, chronic recurrent isolated optic neuritis (CRION) with 
perineural gadolinium enhancement on orbital MRI, conus 
medullaris involvement in myelitis, and ADEM in children are 
common features of MOGAD. Natural courses and treatment 
algorithms have not yet been established for MOGAD. The re-
sponse to high-dose corticosteroid treatment at the time of 
attack is relatively good, but the efficacy of immunosuppres-
sive agents to prevent relapses remains to be determined 
[47]. Several questions remain to be answered in MOGAD, but 
MOGAD is now considered an independent autoimmune CNS 
demyelinating disease, and testing for MOG-Ab in patients 
suspected of having CNS demyelinating diseases is essential 
[48].

N-methyl-D-aspartic acid receptor antibody and 
leucine-rich glioma-inactivated 1 antibody in  
autoimmune encephalitis
With the discovery of autoantibodies, new forms of autoim-
mune encephalitis have been identified; these encephalitides 
manifest some clinical characteristics similar to those in infec-
tious or paraneoplastic limbic encephalitis, but also have dis-
tinctive features associated with specific autoantibodies 
against neuronal cell surface or synaptic proteins [49]. N-meth-

yl-d-aspartate receptor (NMDAR) encephalitis is a common type 
of autoimmune encephalitis. Psychosis, memory deficits, and 
seizures occur initially, and then the disease progresses to a 
later stage of unresponsiveness with catatonia and autonom-
ic instability [50]. Most patients with NMDAR encephalitis are 
women. Neoplasms, especially ovarian teratoma, are known 
to be associated with the disease [51]. Pathological studies of 
the brain and coexisting tumors in cases of NMDAR encephali-
tis revealed that all these tumors had NMDAR-expressing neu-
ronal components, suggesting that the tumor could trigger 
the generation of NMDAR antibody [52]. Although IgG sub-
classes of NMDAR antibodies are IgG1 and IgG3, complement 
deposition was not detected in the brains of patients with 
NMDAR encephalitis [52,53]. This suggests that this autoanti-
body does not induce complement-mediated cytotoxicity, but 
a decrease in synaptic NMDAR expression by crosslinking and 
internalization could be a pathogenic mechanism related to 
the autoantibody [51-54].

LGI1 encephalitis is another clinically recognizable autoim-
mune encephalitis; faciobrachial dystonic seizures precede the 
development of memory disturbance or confusion that char-
acterizes limbic encephalitis [55]. LGI1 is a cell surface protein 
complexed with voltage-gated potassium channels (VGKCs). 
Other VGKC-complex antibodies, except the LGI1 and contac-
tin-associated protein-like 2 (CASPR2) antibodies, bind intra-
cellular components, lack pathogenic potentials, and are not 
related to specific syndromes [56,57].

With these pathogenic autoantibodies related to specific 
types of autoimmune encephalitis, the treatment strategy of 
early active immunotherapy in autoimmune encephalitis is 
further specified and now recommended [58]. Autoantibody 
tests are commercially available, and using both CSF and se-
rum for the tests is recommended due to the lower back-
ground activity and higher specificity with CSF, but the LGI1 
antibody can be preferentially detected in serum [57].

AUTOANTIBODIES IN NEUROMUSCULAR 
DISORDERS

Neurofascin 155, contactin-1, and contactin-associated 
protein 1 antibodies in chronic inflammatory  
demyelinating polyradiculoneuropathy
Chronic inflammatory demyelinating polyradiculoneuropa-
thy (CIDP) is a chronic immune-mediated peripheral nerve 
disorder and is the most common acquired inflammatory 
neuropathy; however, CIDP is clinically heterogeneous. Typi-
cal CIDP presents with symmetrical sensory and motor dys-
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function, a recurrent course, and response to steroid or immu-
noglobulin treatment; there are also atypical forms of CIDP 
(CIDP variants), including distal dominant demyelination, focal 
or multifocal, and pure motor or sensory types [59]. Chronic 
demyelinating neuropathy is often accompanied by dyspro-
teinemia, such as monoclonal gammopathy of unknown sig-
nificance (MGUS), or hematologic malignancies such as mul-
tiple myeloma or polyneuropathy, organomegaly, endocr-
inopathy, M-protein, and skin changes (POEMS) syndrome. 
Because of heterogeneous clinical features and treatment re-
sponse, CIDP is frequently misdiagnosed [60]. Classification 
based on pathomechanisms, biomarkers for early diagnosis, 
and personalized strategies of therapeutic algorithms are still 
unmet needs. Earlier efforts to identify disease-specific auto-
antibodies in CIDP failed, but autoantibodies have been found 
in other chronic immune-mediated neuropathies; anti-gangli-
oside GM1 IgM antibody is found in approximately half of pa-
tients with multifocal motor neuropathy (MMN), and anti-my-
elin-associated glycoprotein (MAG) IgM antibodies are fre-
quently detected in distal dominant acquired demyelinating 
symmetric neuropathy accompanying IgM-MGUS [61]. Auto-
antibodies could play an important role in the pathogenesis 
of CIDP, at least in some patients [62].

Recent studies have identified autoantibodies against nod-
al/paranodal proteins in a subset of patients fulfilling the 2010 
diagnostic criteria for CIDP. Screening of target antigens of IgG 
through proteomic analysis and mass spectroscopy, and de-
tection of autoantibodies from the sera of patients through ELI-
SA and CBA identified autoantibodies against neurofascin 
splice variants 155 (NF155) and 186 (NF186), followed by con-
tactin‑1 (CNTN1) and Caspr1 [63,64]. NF155, CNTN1, and Caspr1 
are cell adhesion molecules in the paranodal junction of the 
Ranvier node; NF155 on the myelin side of the paranodal junc-
tion interacts with CNTN1, which forms a complex with CASPR1 
on the axonal side [65,66]. This nodal/paranodal complex in 
the paranodal junction is important for saltatory conduction by 
blocking nodal currents into the internode [66]. A meta-analy-
sis found a high variability in the frequency of the autoanti-
body detection with a very low diagnostic sensitivity (9.0% in 
anti-NF155 antibodies) and a high specificity [67]. A highly 
specific autoantibody detection test is important for diagnos-
tic utility, and CBA and ELISA are commonly used, but ELISA 
may be associated with more false-positive and false-negative 
results [61].

Autoantibodies against NF155, CNTN1, and Caspr1 are pre-
dominantly IgG4 isotypes. CIDP with autoantibodies directed 
against paranodal junctions differs pathogenetically from typi-

cal CIDP; the traditional concept of CIDP pathogenesis repre-
sented that T-cells, macrophages and complements work to-
gether to induce the disease [68,69]. However, CIDP with au-
toantibodies shows IgG4 deposition without macrophage in-
filtration, and axonal damage is probably due to sodium chan-
nel dysfunction and disturbance of glial support to axons. One 
study using electron microscopy revealed that detachment of 
terminal myelin loops from the axolemma at the paranode 
was frequently found in CIDP with NF155 and CNTN1 antibod-
ies [70]. Besides the difference in pathogenesis, CIDP with au-
toantibodies differs clinically from typical seronegative CIDP. 
Subacute onset and younger age at onset with tremor or ataxia 
are more frequently observed in NF155-Ab-positive CIDP 
[65,71]. CNTN1 and Caspr1 antibodies are detected in a small 
fraction of CIDP cases with severe motor involvement or pain; 
most of these CIDPs with autoantibodies show poor response 
to intravenous immunoglobulin (IVIg) therapy. Rituximab, an 
alternative to IVIg therapy, shows promising treatment results 
in a portion of refractory CIDP with autoantibodies [72].

Distinct clinical features and IgG4-related pathogenesis 
make CIDP with autoantibodies a distinct group of diseases, 
and recent diagnostic and treatment guidelines of CIDP pro-
posed to call these disorders “autoimmune nodopathies” 
rather than CIDP variants [59]. Currently, it is evident that se-
ropositive CIDP should be differentiated from typical CIDP, 
and serologic tests to detect paranodal junction autoantibod-
ies are necessary in clinical practice despite the low frequency 
of seropositivity in CIDP.

Muscle-specific kinase antibody and low-density 
lipoprotein receptor-related protein 4 antibody in 
myasthenia gravis
Myasthenia gravis (MG) is an autoimmune neuromuscular 
junction disorder. With the pathogenic autoantibody against 
the acetylcholine receptor (AChR), MG is a prototype of anti-
body-mediated autoimmune disease [73]. AChR antibodies 
(AChR-Ab) are found in most patients with generalized MG, 
but approximately 15% of patients are seronegative [74]. Fur-
ther efforts to find other autoantibodies in seronegative MG 
focused on the other components of the muscle endplate at 
the neuromuscular junction, including the MuSK, agrin, and 
low-density lipoprotein receptor-related protein 4 (LRP4), 
which can affect the function of neuromuscular junction trans-
mission [75]. Antibodies against MuSK are found in 30% to 
50% of AChR-Ab-negative MG patients [76], and MG with MuSK-
Ab is clinically different from AChR-Ab-positive MG; they show 
more severe bulbar symptoms, frequent muscle atrophy, and 
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less prominent fluctuation of weakness and are not associat-
ed with thymic disorders [77]. MuSK-Ab is predominantly 
IgG4 [78]; thus, the main effector mechanism of MuSK-Ab is 
thought to be related to the inhibition of protein function or 
interaction rather than complement activation; MuSK and 
LRP4 interaction is needed to induce dense clustering of AChR 
by agrin secreted from the axon terminal, which could be in-
terfered by MuSK-Ab [79,80]. LRP4 antibodies are mostly IgG1 
and detected in a small percentage of double-seronegative 
patients for AChR-Ab and MuSK-Ab [81]. The pathogenic roles 
of the LRP4 antibody have been reported in animal models 
immunized with LRP4, or the passive transfer of the LRP4 an-
tibody can cause MG-like symptoms [82], but some contro-
versies remain; the LRP4 antibody could be positive in ap-
proximately 20% of patients with amyotrophic lateral sclero-
sis [83].

Radioimmunoassay is traditionally the gold standard in de-
tecting AChR antibodies based on the 125I-α-BuTx-labelled 
AChR from TE671 cells. The specificity of the test is very high, 
with a sensitivity of 80% to 85% in generalized MG, and chang-
es in the titer can be monitored quantitatively [84,85]. ELISA, 
FIPA, and luciferase assays have the benefits of avoiding the 
hazards of radioactivity, but these methods are not widely 
used due to lower accuracy or difficulty in routine use [86,87]. 
CBA using AChR-expressing HEK293 cells showed high sensi-
tivity and specificity; rapsyn need to be co-transfected to pro-
mote receptor clustering [74]. Recently, clinical trials using 
monoclonal antibodies directed against specific targets, in-
cluding complement, transforming growth factor, or neonatal 
Fc receptors have been actively conducted. To apply a specif-
ic immunotherapy, it has become more important to deter-
mine the patient’s serostatus.

Myositis-specific antibodies
Autoantibodies of myositis can now be detected in clinical 
settings where antibodies were not expected to be present 
previously. Some of the new autoantibodies are anti-tran-
scriptional intermediary factor 1γ (TIF1γ) antibody, anti-nu-
clear matrix protein 2 (NXP2) antibody in dermatomyositis, 
anti-melanoma differentiation-associated gene 5 (MDA5) an-
tibody in myositis with overlapping features, and anti-signal 
recognition particle (SRP) and anti-3-hydroxy-3-methylglutaryl 
CoA reductase (HMGCR) antibodies in immune-mediated nec-
rotizing myositis. Unique clinical features associated with these 
autoantibodies are observed, which have resulted in a major 
change in the classification of myositis [88,89]. These autoanti-
bodies were usually detected by immunoprecipitation, which 

could be considered as the gold standard test; however, there 
is a limitation on the use of this in clinical practice [90]. These 
limitations can be overcome by commercial multiplex dot or 
line immunoblots. However, recent studies using these meth-
ods showed variable specificity but low sensitivity with large 
differences in diagnostic performance according to clinical 
settings [90-92]. Recent classification criteria for idiopathic in-
flammatory myopathies include autoantibodies for classifica-
tion; the role of autoantibodies in inflammatory myopathies 
is growing [93]. However, their use for the diagnosis of inflam-
matory myositis is still a challenge, and further validation of 
these assays is needed [94].

CONCLUSION

The clinical approach to autoimmune diseases has signifi-
cantly changed in the past decades with a better understand-
ing of the pathogenesis for which the discovery of autoanti-
bodies plays a crucial role. Newly discovered autoantibodies 
have provided a better insight into the pathological mecha-
nisms of these diseases and contribute to the development of 
specific therapies. Autoantibody testing is currently manda-
tory for clinical practice because clinical features and treat-
ment strategies for seropositive diseases are different from 
those of seronegative diseases. However, limitations in the 
availability of new antibody testing methods for physicians still 
exist. CBA is a useful method to identify autoantibodies with 
high sensitivity and specificity, but it is difficult to establish 
and maintain in-house cells for CBA in terms of technical and 
cost aspects. Commercial CBA kits using fixed cells are widely 
used in hospital laboratories or outsourced, but their use is 
limited due to high test costs, and caution is required in the 
interpretation of results. Continuing refinement of autoanti-
body testing through research is required to discover new tar-
get antigens or to be applied in clinical use.

Since most CNS and neuromuscular autoimmune diseases 
are rare diseases, multicenter cooperative research is impera-
tive for the standardization of test methods and accumulation 
of clinical data. In response to this need, a Korean research 
network for Risk factor analysis of Autoimmune diseases in 
the Central nervous system (KoRAC) was established to sup-
port antibody testing and collect prospective clinical data and 
biological samples. It is expected that such a multicenter 
study will take a step closer to the development of more effi-
cient diagnostic methods and treatments.
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