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Obesity can induce chronic low-grade inflammation via oxidative stress. Tetrahydrocurcumin (THC) is a major curcumin
metabolite with anti-inflammatory and antioxidant effects, but little is known about its effects on the skin of obese individuals.
Thus, the aim of this study was to investigate the effects of THC on inflammatory cytokine production, oxidative stress, and
autophagy in the skin of mice with high-fat diet- (HFD-) induced obesity. Eight-week-old C57BL/6J mice were fed a regular
diet, HFD (60% of total calories from fat), or HFD supplemented with THC (100mg/kg/day orally) for 12 weeks. We measured
their body weights during the experimental period. After 12-week treatments, we performed western blotting and real-time
polymerase chain reaction analyses on skin samples to evaluate the expression of inflammatory cytokines, oxidative stress
markers, and autophagy markers. We observed higher tumor necrosis factor-α (TNF-α), NADPH oxidase 2 (Nox2), Nox4, and
phosphorylated p65 levels; lower nuclear factor erythroid 2-related factor 2 (Nrf2) expression; and higher light chain 3 (LC3),
autophagy-related 5 (Atg5), and Beclin 1 expression in the skin of HFD mice compared to the corresponding levels in the skin
of mice fed with regular diet. THC administration decreased TNF-α, Nox2, Nox4, and phosphorylated p65 levels and activated
the Nrf2 pathway. Interestingly, THC administration suppressed the expression of the autophagy markers LC3, Atg5, and Beclin
1. Overall, HFD-fed mice exhibited an elevation in inflammation, oxidative stress, and autophagy in their skin. THC
ameliorated obesity-related skin pathology, and therefore, it is a potential therapeutic agent for obesity-related inflammatory
skin diseases.

1. Introduction

Obesity, a global health problem, is a major cause of systemic
metabolic inflammation and various diseases, including type
2 diabetes, dyslipidemia, hypertension, and cardiovascular
diseases [1]. Obesity has also been linked to various skin
conditions, such as lymphedema, acanthosis nigricans, striae
distensae, and psoriasis [2–4]. Obese individuals often experi-
ence reduced skin barrier function, dry skin, and itching [5].

However, the mechanisms underlying obesity-associated
skin pathologies remain unclear.

Autophagy is the primary process involved in the cellular
elimination of toxic protein aggregates, damaged organelles,
and invading microorganisms [6]. By degrading signaling
components, autophagy can regulate the NF-κB signaling
pathway and affect immune responses [7]. Autophagy plays
an important protective function against obesity and
obesity-induced lipotoxic, proteotoxic, and oxidative stresses
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and thereby preserves physiological homeostasis in the
human body [8]. However, obesity and its associated stresses
can disrupt the autophagic process, further exacerbating
obesity-related abnormalities in multiple metabolic organs
[9, 10]. Autophagy is also implicated in multiple skin disor-
ders such as infectious skin disease, psoriasis, and skin cancer
[11–14]. However, to the best of our knowledge, there has
been no study on the effects of obesity-induced skin patholo-
gies on autophagy.

Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-
heptadiene-3,5-dione) is an active component in turmeric
rhizomes (Curcuma longa Linn.), a common spice in dishes
such as curries. Curcumin has antioxidative, anti-inflamma-
tory, antihyperlipidemic, hypoglycemic, and anticarcino-
genic properties [15]. It also has protective effects against
diabetes mellitus-related nephropathy, retinopathy, and vas-
cular diseases [16]. Tetrahydrocurcumin (THC) is a reduced
curcumin analog found in the gastrointestinal tract; it has a
stronger antioxidant activity than curcumin [17].

Here, we aimed to determine the molecular events driv-
ing diet-induced obesity-related inflammation, oxidative
stress, and autophagy in the skin. Furthermore, we examined
the effects of THC on skin, including autophagy, in a diet-
induced obese mouse model.

2. Materials and Methods

2.1. Animal Experiments. All animal procedures were
approved by the Institutional Animal Care and Use Commit-
tees of Yonsei University, Wonju, Korea (YWC-170802-2).
Six-week-old male C57BL/6J mice (15 g) were purchased
from Dae Han Link (Chungbuk, Korea). The mice were
housed in animal rooms at a constant temperature of 20°C
± 5°C and a 12 h light/dark cycle. After a 2-week acclimatiza-
tion period, the 8-week-old C57BL/6J mice were assigned to
the following three groups: regular diet (n = 5), high-fat diet
(HFD, n = 5), and HFD orally supplemented with 100
mg/kg/day THC (Sigma-Aldrich, St. Louis, MO, USA
(96.5% purity, Figure 1)) (HFD+T100, n = 5). HFD provided
60% of energy in the form of fat (D12492; Research Diets,
New Brunswick, NJ). 94% of fatty acids in the HFD was com-
posed of palmitic acid (20%), stearic acid (11%), oleic acid
(34%), and linoleic acid (29%). THC was provided in the
mouse chow. During the 12-week experimental period, we
monitored the changes in food intake and body weight of
the mice on a weekly basis. At the end of the experiment,
we euthanized the mice and immediately excised the shaved
skin.

2.2. Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR). Total RNA was extracted using the
RNeasy® Plus Mini Kit (Qiagen, Hilden, Germany). We used
the Transcriptor First-Strand cDNA Synthesis Kit (Roche
Applied Science, Mannheim, Germany) to synthesize cDNA
from the total RNA (1μg). We performed qPCR in triplicate
using the TaqMan™Master Mix and Real-Time PCR system
(Applied Biosystems, Foster City, CA, USA). We used the
primers of LC3 (also known as Map1lc3a; TaqMan Assay
ID Mm00458724_m1), Atg5 (Mm001187303_m1), Becn1

(Mm01265461_m1), p65 (also known as Rela;
Mm01310735_m1), Nox2 (Mm01287743_m1), Nox4
(Mm00479246_m1), Nrf2 (Mm00477784_m1), and TNF-α
(Mm00443258_m1) in this study. We normalized the mRNA
levels of LC3, Atg5, Becn1, p65, Nox2, Nox4, Nrf2, and TNF-α
to that of GAPDH (Mm02758991_m1). Relative quantifica-
tion was performed using a LightCycler® 96 Instrument
(Roche Diagnostics, Mannheim, Germany).

2.3. Western Blotting. The mouse skin tissues were extracted
in PRO-PREP™ lysis buffer (Intron, Seoul, Korea) containing
protease inhibitor cocktail (Roche Diagnostics, Mannheim,
Germany). We used a solution of copper (II) sulfate and
bicinchoninic acid (Sigma-Aldrich, St. Louis, MO, USA) to
measure the protein concentrations of the extracts. Equal
amounts of protein (20μg) were separated by 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, trans-
ferred to enhanced chemiluminescence nitrocellulose mem-
branes (GE Healthcare, Little Chalfont, UK), and then
blocked for 1 h with 5% skim milk in Tris-buffered saline
containing 0.1% TWEEN® 20. The membranes were incu-
bated overnight at 4°C with rabbit anti-LC3 (1 : 1,000;
Abcam, Cambridge, MA, USA), rabbit anti-Beclin 1 (1 :
1,000; Novus Biologicals, Centennial, CO, USA), rabbit
anti-Atg5 (1 : 1,000; Abcam), rabbit anti-p65 (1 : 1,000;
Abcam), rabbit anti-phospho p65 (1 : 1,000; Abcam), rabbit
anti-TNF-α (1 : 1,000; Abcam), rabbit anti-Nox2 (1 : 1,000;
Abcam), rabbit anti-Nox4 (1 : 1,000; Abcam), or rabbit anti-
Nrf2 (1 : 1,000; Abcam) antibodies. The primary antibodies
were detected using horseradish peroxidase-conjugated goat
anti-rabbit or goat anti-mouse (1 : 1,000, Abcam) IgG sec-
ondary antibodies. We visualized the protein bands using
LuminoGraph II (Atto, Tokyo, Japan). Densitometric analy-
sis was performed using ImageJ version 1.8.0 (National Insti-
tutes of Health).

2.4. Statistical Analyses. We conducted a one-way ANOVA
with Tukey’s post hoc tests to analyze the differences in body
weight; blood glucose levels; TNF-α, Nox2, Nox4, Nrf2, LC3,
Beclin 1, and Atg5 mRNA and protein expression; p65
mRNA expression; and phosphorylated p65 protein levels
among the groups. Statistical analyses were performed using
GraphPad Prism version 5.01 (GraphPad Software, San
Diego, CA, USA). Significance was set at P < 0:05.

3. Results

3.1. Tetrahydrocurcumin Treatment Lowered TNF-α mRNA
and Protein Expressions in the Skin of Obese Mice. As
expected, after 12 weeks of treatment, the HFD group mice
presented a significantly higher body weight and blood glu-
cose level than the regular diet group mice. The HFD+T100
group presented a significantly lower body weight than the
HFD-alone group mice (Figures 2(a) and 2(b)). Furthermore,
TNF-α mRNA expression was significantly higher in the
HFD group mice than in the regular diet group mice. How-
ever, the HFD+T100 group mice had significantly lower skin
TNF-α mRNA expression than the HFD group mice
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(Figure 2(c)). TNF-α protein expression exhibited the same
patterns as mRNA expression (Figures 2(d) and 2(e)).

3.2. THC Alleviated Oxidative Stress in the Skin of Obese
Mice. Nox2 and Nox4 contribute to reactive oxygen species
production [11], whereas Nrf2 is a component of cellular
antioxidant pathways [18]. We measured Nox2, Nox4, and
Nrf2 expressions to evaluate the changes in oxidative stress
in the skin. The results of qRT-PCR showed that Nox2 and
Nox4 mRNA levels were significantly higher, and the Nrf2
mRNA level was significantly lower in the skin of HFD-fed
mice than in the skin of regular diet-fed mice
(Figures 3(a)–3(c)). THC treatment attenuated the HFD-
induced increase in the Nox2 and Nox4 mRNA expressions

(Figures 3(a) and 3(b)). In contrast, Nrf2 mRNA expression
in the HFD+T100 mouse skin was higher than that in the
HFD mouse skin (Figure 3(c)). The expression profiles of
Nox2, Nox4, and Nrf2 proteins were similar to those of the
mRNA (Figures 3(d)–3(g)).

3.3. THC Suppressed the Induction of Autophagic Flux in the
Skin of Obese Mice. To investigate the effects of obesity and
THC on autophagy, we measured the expression of the
autophagy-related factors LC3, Beclin 1, and Atg5. The
mRNA expression of LC3, BECN1, and Atg5 in the skin of
HFD-fed mice was significantly higher than that in the skin
of regular diet-fed mice. However, THC treatment signifi-
cantly inhibited the HFD-induced increases in LC3, BECN1,

OH

OO
OCH3H3CO

HO OH

OO
OCH3H3CO

HO

Figure 1: Chemical structures of curcumin and tetrahydrocurcumin.
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Figure 2: Body weight, blood glucose levels, and TNF-α mRNA and protein expressions in the regular diet (RD), high-fat diet (HFD), and
HFD plus tetrahydrocurcumin supplementation (HFD+T100) groups. (a) After 12 weeks of treatment, the HFD group presented a
significantly higher body weight than the RD group, whereas the HFD+T100 group presented a significantly lower body weight than the
HFD group. (b) After 12 weeks of treatment, the HFD group presented a significantly higher blood glucose level than the RD group. The
HFD+T100 group presented a lower blood glucose level than the HFD group, although the difference was not significant. (c) qRT-PCR
analysis of TNF-α expression in the skin of RD (n = 5), HFD (n = 5), and HFD+T100 (n = 5) mice. Relative mRNA expression was
normalized to GAPDH expression. Fold differences in expression were calculated using the comparative CT method, standardized to the
RD value. (d) Western blotting of TNF-α in the skin of RD, HFD, and HFD+T100 mice. Data were normalized to GAPDH expression.
Data are representative of three independent experiments. (e) Differences in western blot quantification were determined. Data are
presented as mean ± standard deviation of three independent experiments. All comparisons utilized one-way ANOVA with Tukey’s post
hoc tests. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001. RD: regular diet; HFD: high-fat diet; HFD+T100: high-fat diet+tetrahydrocurcumin
(100mg/kg).
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and Atg5 mRNA expressions (Figures 4(a)–4(c)). The pro-
tein expression pattern was similar to the mRNA expression
pattern in all three groups (Figures 4(d)–4(g)).

3.4. NF-κB/p65 Signaling Pathway Mediates the Anti-
Inflammatory and Antioxidant Effects of THC in the Skin of
Obese Mice. The NF-κB/p65 signaling pathway plays a cen-
tral role in innate and adaptive immune responses by induc-
ing proinflammatory genes and regulating immune cells [19].

To determine the detailed mechanisms underlying the anti-
inflammatory and antioxidant effects of THC, we evaluated
its effect on the NF-κB/p65 expression. p65 mRNA expres-
sion and phosphorylated p65 protein levels in the skin of
HFD-fed mice were significantly higher than those in the
skin of regular-diet-fed mice. p65 mRNA expression and
phosphorylated p65 protein levels were significantly lower
in the skin of HFD+T100-fed mice than in the skin of
HFD-fed mice (Figure 5).
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Figure 3: Nox2, Nox4, and Nrf2 expressions in RD, HFD, and HFD+T100mouse skin. (a–c) qRT-PCR analysis of (a)Nox2, (b)Nox4, and (c)
Nrf2mRNA expressions in the skin of RD (n = 5), HFD (n = 5), and HFD+T100 (n = 5) mice. Relative mRNA expression was normalized to
GAPDH expression. Fold differences in the expression were calculated using the comparative CT method, standardized against the RD value.
(d) Western blotting analysis of Nox2, Nox4, and Nrf2 protein expressions in the skin of RD (n = 5), HFD (n = 5), and HFD+T100 (n = 5)
mice. Data were normalized to GAPDH expression. The results are representative of three independent experiments. (e–g) Differences in
western blot quantification were determined. Data are presented as mean ± standard deviation of three independent experiments. All
comparisons utilized one-way ANOVA and Tukey’s post hoc tests. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001. RD: regular diet; HFD: high-
fat diet; HFD+T100: high-fat diet+tetrahydrocurcumin (100mg/kg).
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4. Discussion

Our results supported that HFD-induced obesity affected
inflammatory cytokines, oxidative stress, and autophagy
markers in the skin. In terms of potential mechanisms, a
recent in vivo study using an imiquimod-induced psoriatic
dermatitis animal model showed that HFD exacerbates pso-
riatic dermatitis by increasing IL-17A-producing T cells in
the skin [20]. Another study found that the typical high-fat,

high-sugar western diet enhanced susceptibility to
imiquimod-induced psoriatic dermatitis in mice [21]. Our
research was consistent with these previous results and sug-
gests that HFD induces skin inflammation with molecular
changes in cytokine production and autophagy, although
no obvious changes to skin morphology occurred.

The role of oxidative stress has been emphasized in obese
patients with chronic inflammatory skin disease such as pso-
riasis [22]. The nuclear factor- (NF-) κB pathway is related to
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Figure 4: Beclin 1, Atg5, and LC3 expressions in RD, HFD, and HFD+T100 mouse skin. (a–c) qRT-PCR analysis of (a) BECN1, (b) Atg5, and
(c) LC3 expressions in the skin of RD (n = 5), HFD (n = 5), and HFD+T100 (n = 5) mice. Relative mRNA expression, determined by qRT-
PCR, was normalized to GAPDH expression. Fold differences in the expression were calculated using the comparative CT method and
standardizing against the RD value. (d–g) Western blotting analysis of the skin from RD (n = 5), HFD (n = 5), and HFD+T100 (n = 5)
mice for Beclin 1, Atg5, and LC3 protein expressions. Data were normalized to GAPDH expression. The results are representative of three
independent experiments. (e–g) Differences in western blot quantification were determined. Data are presented as mean ± standard
deviation of three independent experiments. All comparisons utilized one-way ANOVA and Tukey’s post hoc tests. ∗P < 0:05, ∗∗P < 0:01,
and ∗∗∗P < 0:001. RD: regular diet; HFD: high-fat diet; HFD+T100: high-fat diet+tetrahydrocurcumin (100mg/kg).
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inflammatory responses through the regulation of the innate
and adaptive arms of the immune system [23]. NF-κB, a
redox-sensitive factor, is also associated with oxidative stress
[24]. Notably, a vicious cycle has been reported between the
NF-κB pathway and oxidative stress. Oxidative stress is
important in the activation of the NF-κB pathway and
inflammatory cytokines are induced following activation of
this pathway, exacerbating the oxidative stress [25]. Of note,
Carlsen et al. reported that NF-κB is activated in the whole
body in obese mice fed a HFD [26]. Furthermore, obesity
makes the skin more susceptible to UVB-induced oxidative
stress and activation of the NF-κB signaling pathway in mice
[27]. The present study showed that obesity induced the NF-
κB activation as well as oxidative stress in the skin.

Previous studies using both human and mouse tissues
demonstrated that obesity leads to the accumulation of autop-
hagosomes in the liver and adipose tissues [28, 29]. Notably, we
found in the present study that obesity induced skin autophagy.
Autophagy may be a defense mechanism component to main-
tain cellular homeostasis under obesity-associated stress, com-
pensating for obesity-associated endoplasmic reticulum stress
[10]. Lipotoxic activation of protein kinase C induces autopha-
gic flux in fibroblasts, protecting the cells from apoptosis [30].
Autophagy is closely associated with inflammatory skin dis-
eases such as psoriasis [31]. Several studies provide a glimpse
of possible mechanisms. For instance, autophagy inhibition
increases cellular cholesterol levels during the IL-17A-
mediated inflammatory response in keratinocytes [32]. In
humans and mice, keratinocyte autophagy is positively corre-
lated with psoriasis severity [31]. Moreover, impaired keratino-
cyte autophagy leads to psoriatic skin inflammation by
activating aryl hydrocarbon receptor signaling [12].

Curcumin suppresses HFD-induced insulin resistance
and obesity by decreasing liver lipogenesis and inhibiting adi-
pocyte inflammatory pathways [33]. Additionally, curcumin
ameliorates oxidative stress and Nrf2 signaling dysfunction

in the muscles of HFD-fed mice [34]. However, curcumin
has low bioavailability and poor absorption, limiting its ther-
apeutic potential [35]. One way to overcome these limitations
is to use THC, which has stronger antioxidant activity [17].
Recent studies have investigated the anti-inflammatory and
antioxidant roles of THC, a major active metabolite of curcu-
min, against tumors and inflammatory diseases [36, 37]. The
compound can protect against cisplatin-induced or FK506-
related nephrotoxicity by regulating inflammation and apo-
ptosis [38]. Here, we have reported the antioxidant and
anti-inflammatory effects of THC on obesity-induced skin
impairment. Interestingly, these effects were associated with
modulation of skin autophagy.

This study had some limitations that should be addressed
in future research. First, the relationship between obesity and
inflammatory skin diseases should be confirmed with further
studies using animal skin disease models (e.g., imiquimod-
induced psoriasiform inflammation). Second, the clinical rel-
evance of these obesity-related effects on human skin must be
verified in human research. Third, we should clarify the
actual anti-inflammatory mechanism of THC in the skin,
specifically determining the main target cells via in vitro
experiments.

5. Conclusions

In summary, we examined the effects of diet-induced obesity
on skin inflammation and investigated the underlying mech-
anisms. We found that obesity-induced skin inflammation is
associated with cutaneous oxidative stress, autophagy, and
the NF-κB/p65 signaling pathway. Promisingly, THC ame-
liorated these effects. Thus, obesity management may be an
effective method for promoting the recovery from skin
inflammation, the latter of which can be addressed specifi-
cally through THC, a promising therapeutic. Using HFD skin
disease models, future studies are needed to clarify whether

200

p65

150

⁎⁎⁎⁎⁎

100

50

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

0

RD H
FD

H
FD

+T
10

0
(a)

RD

pp65

p65

GAPDH

HFD HFD+T100

(b)

200

pp65

150

⁎⁎
⁎⁎ ⁎⁎⁎

100

50

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n

0

RD H
FD

H
FD

+T
10

0

(c)

Figure 5: p65 expression and phosphorylation in RD, HFD, and HFD+T100 mouse skin. (a) qRT-PCR analysis of p65 expression in RD
(n = 5), HFD (n = 5), and HFD+T100 (n = 5) mouse skin. Relative mRNA expression, determined by qRT-PCR, was normalized to
GAPDH expression. Fold differences in expression were calculated using the comparative CT method, standardized against the RD value.
(b) Western blotting of phosphorylated p65 levels in the skin of RD (n = 5), HFD (n = 5), and HFD+T100 (n = 5) mice. Data were
normalized to p65 and GAPDH expressions. The results are representative of three independent experiments. (c) Differences in western
blot quantification were determined. Data are presented as mean ± standard deviation of three independent experiments. All comparisons
utilized one-way ANOVA and Tukey’s post hoc tests. ∗∗P < 0:01 and ∗∗∗P < 0:001. RD: regular diet; HFD: high-fat diet; HFD+T100: high-
fat diet+tetrahydrocurcumin (100mg/kg); pp65: phosphorylated p65.
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there are common pathomechanisms between obesity and
skin inflammation. Moreover, clinical trials are required to
investigate the efficacy of THC for patients suffering not only
from inflammatory skin diseases but also from obesity.
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